The generator matrix

 1  0  0  1  1  1  1  1  1  6  1  1 X+6  1 2X+3  1 2X  1  1  X  1  1  3  1  1 2X  1  1  1 2X  1  1  1  1  1  1  0 X+6  1  1  1 2X+6  1  6  1  1  1  1  1  1  1  1  1  1  1 X+3  1  X  1  1  1  1  1  1  1  1 X+3  1  1  1  1  1  1 2X+3  X  1  1
 0  1  0  6  1  7  5  X  8  1 2X+7 2X+5  1 X+3  1 2X X+6 2X+3 2X+1  1 X+2  8  1  7  3  1 X+5 X+7 2X+2  1 X+7 2X+2 2X+4  4 X+8 2X+6 2X+3  1  6 2X+5  0 2X+6 2X  1 X+4 X+2  6  5  1 X+4 2X+6 X+7 2X+4  3  X  X 2X+2  1 X+5  1 2X+8 2X+7 X+6 X+8 X+7 X+4  1 2X+2 X+6  8 2X+4 2X+7  6  1  1 X+4  4
 0  0  1 2X+7 2X+1  6 X+2 X+8 2X  1 2X+5  7  5 2X+3 X+6  4  1 2X+2 2X+4 X+1  8 X+3 2X  2 X+7 2X+2  4  X 2X+6  5  7  5 X+5 X+6 X+3 2X+3  1  1 2X 2X+7 X+5  1  3 2X+4 2X+1 2X+7  4  8 2X+5 X+1 X+4 2X+3 X+7  5  2  1  1  X  6 X+5  0 2X+6  3 2X+5 2X+8 X+2  6 2X+8  7 2X+5 2X+4  8  X 2X+6 2X+4  0  5

generates a code of length 77 over Z9[X]/(X^2+6,3X) who�s minimum homogenous weight is 148.

Homogenous weight enumerator: w(x)=1x^0+1014x^148+1608x^149+1264x^150+2778x^151+1896x^152+1150x^153+1740x^154+1602x^155+1052x^156+1758x^157+1080x^158+370x^159+876x^160+630x^161+286x^162+402x^163+150x^164+2x^165+6x^166+4x^168+6x^169+6x^172+2x^174

The gray image is a code over GF(3) with n=693, k=9 and d=444.
This code was found by Heurico 1.16 in 1.15 seconds.